Grade 9/10 Math Circles March 20, 2024
 Probability I - Solutions

In-Lesson Exercises

1. No, because $A B$ is not an element of $\{A, B, C\}$.
2. We take every combination of elements: $\emptyset,\{x\},\{y\},\{z\},\{x, y\},\{y, z\},\{x, z\}, S$
3. Many possible answers
4. Since every element in A is also in $B, A \cap B=A$ and $A \cup B=B$.
5. (a) $E \cap P=\{2,4,6\} \cap\{2,3,5\}=\{2\}$
(b) $O \cap L=\{1,3,5\} \cap\{1,2\}=\{1\}$
(c) $E \cup L=\{2,4,6\} \cup\{1,2\}=\{1,2,3,5\}$
(d) $P \cup O=\{2,3,5\} \cup\{1,3,5\}=\{1,2,3,5\}$

Bonus: $O \cap E=\{1,3,5\} \cap\{2,4,6\}=\emptyset$, so O and E are disjoint.
6. Since each roll is equally likely, $P(E)=n(E) / 6$.
(a) $P(A)=n(A) / 6=n(\{2\}) / 6=1 / 6$
(b) $P(B)=n(B) / 6=n(\{1,3,5\}) / 6=3 / 6$
(c) $P(A \cap B)=n(A \cap B) / 6=n(\{2\} \cap\{1,3,5\}) / 6=n(\emptyset) / 6=0$
(d) $P(A \cup B)=n(A \cup B) / 6=n(\{2\} \cup\{1,3,5\}) / 6=n(\{1,2,3,5\}) / 6=4 / 6$
7. The probabilities must sum to 1 , so $\mathrm{P}($ blue $)=0.5$.

Additional Exercises

1. There are $6 \cdot 6=36$ possible outcomes from rolling two dice. There are 6 ways to roll doubles, so $P($ doubles $)=6 / 36$.

To determine the probability that a roll is less than 11 , we will use the complement rule. There are only three ways to roll at least $11: 5 / 6,6 / 5$, and $6 / 6$. If L is the event that a roll is at least 11 , then

$$
P(L)=1-P\left(L^{C}\right)=1-\frac{n\left(L^{C}\right)}{36}=1-\frac{3}{36}=\frac{33}{36}
$$

2. We can use the union rule for this problem.

Let A be the event that you draw an ace and S be the event that you draw a spade. There are 52 cards, 4 aces, and 13 spades. Exactly 1 card is both an ace and a spade.

$$
P(A \cup S)=P(A)+P(S)-P(A \cap S)=\frac{n(A)}{52}+\frac{n(S)}{52}-\frac{n(A \cap S)}{52}=\frac{4}{52}+\frac{13}{52}-\frac{1}{52}=\frac{16}{52}
$$

Now, let F be the event that you draw a face card. There are 12 face cards, 3 of which are spades. So,

$$
P(F \cup S)=P(F)+P(S)-P(F \cap S)=\frac{n(F)}{52}+\frac{n(S)}{52}-\frac{n(F \cap S)}{52}=\frac{12}{52}+\frac{13}{52}-\frac{3}{52}=\frac{22}{52}
$$

3. We start with a total of $3+6+1=10$ chocolates. Let D represent dark chocolate and S represent the sample space of all chocolates.

The probability of drawing a dark chocolate will be the number of dark chocolates divided by the total number of chocolates. However, adding k dark chocolate increased both the amount of dark chocolate and the amount of total chocolate. That is,

$$
P(D)=\frac{n(D)}{n(S)}=\frac{1+k}{10+k}
$$

We must set the above equation equal to $1 / 4$ and solve for k.

$$
\frac{1+k}{10+k}=\frac{1}{4}
$$

Cross multiplying and solving gives us $k=2$.
4. Let R, B, O, T be the events that the ball is red, blue, has a 1 , and has a 2 , respectively.

We want to find $P(R \cap O), P(R \cap T), P(B \cap O)$, and $P(B \cap T)$.
Rearranging the union rule lets us solve for the first value:

$$
P(R \cap O)=P(R)+P(O)-P(R \cup O)=\frac{10}{20}+\frac{9}{20}-\frac{13}{20}=\frac{6}{20}
$$

This tells us that there are 6 balls which are both red and have a 1 . Since every ball has a number, the remaining 4 red balls must have a 2 . (Notice that we are using the fact that $O=T^{C}$.) Thus, $P(R \cap T)=\frac{4}{20}$.
We know there are 9 total balls with a 1 , and 6 of those are red. The remaining 3 must be blue, so $P(B \cap O)=\frac{3}{20}$.
Similarly, there are 11 total balls with a 2 , and 4 of those are red. The remaining 7 must be blue, so $P(B \cap T)=\frac{7}{20}$.
To check our work, we can confirm that the probability of every possibility adds up to 1 :

$$
P(R \cap O)+P(R \cap T)+P(B \cap O)+P(B \cap T)=\frac{6}{20}+\frac{4}{20}+\frac{3}{20}+\frac{7}{20}=1
$$

